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The problem of the bending of a prismatic elastic solid by finite torques under large deformation conditions is considered: Using 
the semi-inverse method, the initial three-dimensional boundary-value problem of the non-linear theory of elasticity is reduced 
to a two-dimensional non-linear boundary-value problem for a region in the form of the cross-section of the beam. Two formulations 
of the problem are given in the cross-section: in terms of the displacements and of the stresses. Stress functions are introduced 
and a variational formulation of the two-dimensional problem is obtained, based on the supplementmy energy principle. An 
approximate solution of the problem of the strong bending of a beam of rectangular cross-section is found for a semi-linear material 
and for a Bartenev-Khazanovich material using the Ritz method. © 2000 Elsevier Science Ltd. All rights reserved. 

In the linear theout of elasticity the problem of the deformation of  a prismatic solid by end loads is 
called the Saint-Venant problem. Hence, the problem of strong pure bending is a non-linear form of 
one of the Saint-Venant problems. The solution of  the other non-linear Saint-Venant problem - the 
torsion problem - was described previously [1, 2]. The plane non-linear problem of the pure bending 
of an elastic strip was considered in [3]. 

1 R E D U C T I O N  O F  T H E  P R O B L E M  O F  P U R E  B E N D I N G  T O  
A T W O - D ] ( M E N S I O N A L  N O N - L I N E A R  B O U N D A R Y - V A L U E  P R O B L E M  

Consider an elastic solid, which, in the reference configuration, has the form of a prismatic rod. The 
Cartesian coordina~es xl and x2 will be read off in the plane of the cross-section of the prism and the 
x3 coordinate will be read off along the beam axis. The coordinate unit vectors of the beam will be 
denoted by ik (k = 1, 2, 3). We will denote by Xn (n = 1, 2, 3) the CarteSian coordinates of points of the 
deformed solid, read off along the same directions and from the same origin. We will assume that this 
elastic solid undergoes a finite deformation, described by the relations 

X, = cz(.~',, .r 2), X 2 = pfx,, x 2 )cosier 3, X 3 = p(x,, x 2)sin 13.r 3 (1.1) 

I • - - -  tORSI 

It can be seen that for a deformation of  the form (1.1) each material straight line, parallel in this 
frame of reference to the beam axis, after deformation is converted into an arc of a circle, situated in 
a plane parallel to the x2x 3 plane. Any cross-section x3 = const after deformation remains plane, rotated 
around the il axis by an angle ~ 3  and undergoing a certain deformation inits plane, characterized by 
the functions a(Xl, x2), 0(xl, x2). Hence, the coordinate transformation (1.1) converts the right prism 
into a sector of a circular ring, which corresponds to the bending of the rod. 

The deformation gradient, calculated using (1.1), has the form 

c-)a . . ~p ~a . . + 3 p  i~ez + ~pi3e3 (1.2) C = ¢-)X" i,i. = - - i l l  I + ~ i l e 9  + .-7----!.~11 
~.r, ~-h ~xl - rlx2 - ~x2 " 

e 2 = i 2 cos  I]x 3 + i 3 sin ~x 3, e3 = - | 2  sin ~ 3  + 1t cos [~r3 (1.3) 

By (1.3) the vector triple il, e2, e3 forms an orthonorma!ized basis, and the vectors ii and e2 lie in the 
cross-section plane of the curved rod. Using (1.2) we can determine the measure of  the Cauchy 
deformations. 
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Expression (1.4) shows that the tensor G is independent of the x3 coordinate. 
The system of equations of elastostatics of an isotropic uniform solid when there are no mass forces 

consists of the equilibrium equations for the Piola stress tensors D 

aD 
i, '-'x k o  = 0 (1.5) 

and the constitutive relations 

d W  
D = d C  = al (I I , / 2, / 3 )C + a2(I  1 , ! 2, ! 3 )G- C + a3(/I , / 2, 13)C -r  

(1.6) 
1 9 / I = t rG,  / 2 = 5 ( t r - G - t r G 2 ) ,  / 3 = d e t G  

Here W is the specific potential energy of the deformation, 11,12 and 13 are the principal invariants 
of the Cauchy deformation measure, and al, a2 and a 3 are certain functions of these invariants. 

It follows from (1,2), (1.4) and (1.6) that the Piola stress tensor in this problem has the following 
representation 

D = Dttilit + Dt2ite~ + D2ti2it + D22i2e2 + D33i3e3 (1.7) 

where the quantities Dsk are independent of the x3 coordinate. Taking (1.7) into account the equilibrium 
equations (1.5) can be reduced to the form. 

~Dfl ' ~D21 = 0 ,  ~DI2 °~D22 
ax, ~" <')x---~- ax I + ax 2 = 13D~3 (1.8) 

The boundary conditions n • D = 0 on the side surface of the beam, which is assumed to be load- 
free, can be written, using (1.7), in the following form 

niDtl+n2D21=0, niDi2 + n 2 D 2 2 = O  
(1.9) 

n = n i l  I + n 2 i  2 

Here n is the unit vector of the normal to the side surface of the prism. 
We will now determine the principal vector and the principal moment of the forces acting in an 

arbitrary cross-section of the bent beam. We integrate the equilibrium equations (1.5) over part of the 
volume of the beam, bounded, in the system of reference, by the side surface and the two sections 
x 3 = a and x 3 = b, where a and b are arbitrary numbers. Using relations (1.7) and (1.9) and applying 
the divergence theorem, we obtain the equation 

I(sin 13a - sin [3b)i 2 + (cos ~b - cos 13a)i3 ] JS Da3d~ = o 
a 

(1.10) 

where cr is the plane region occupied by the cross-section of the beam in the frame of reference employed. 
If follows from (1.10) that the integral on the left-hand side is equal to zero. This indicates that the 
principal force vector, acting in any cross-section of the beam for a deformation of the form (1.1). is 
equal to zero. Consequently, the principal moment of the forces in the cross-section is independent of 
the point of reduction. Since the vector e 3 is directed along the normal to the plane of cross-section of 
the prism in the deformed state, it follows from (1.7) that only normal stresses act in the section. For 
this reason the vector of the principal moment of these stresses has no component along the e 3 axis, 
i.e. the torque is equal to zero. The vector of the bending moment can be expressed by the formula 
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M = - ~  i.+-Dx(~i t +pe2)do= i ,#  D33pdff-e:# D33odc 
ff O ff 

(1.11) 

Expression (1.11) shows that the bending moments, with respect to orthogonal axes situated in the 
plane of the deformed cross - section, are the same in all cross-sections of the beam. 

Hence, we have slhown that the realization of deformation (1.1) in a uniform isotropic prismatic beam 
requires only a bending moment to be applied to the beam ends. The plane of action of the resulting 
pair in general is not parallel to the bending plane x~3. 

The unknown functions a(xl, x2) and p(Xl, x2) are found by solving two-dimensional non-linear 
boundary-value problem (1.8), (1.9) for the region or. We will assume that the quantities D~k in (1.8) 
and (1.9) can be expressed in terms of the functions P and a using relations (1.2), (1.4) and (1.6). If 
ot and P are the solution of this boundary-value problem, then, as can easily be shown, the functions 
ot + h and P, where h is an arbitrary constant, will also satisfy Eqs (1.8) and boundary conditions (1.9). 
This non-uniqueness of the solution can be eliminated if the function ot is subject to the additional 
condition 

J~ o~/o = 0 (1.12) 

which eliminates the possibility of a free translational displacement of the elastic solid in the direction of 
the Xl axis. Taking limitation (1.12) into account we would expect the solution of problem (1.8), (1.9) to 
be unique. In fact, the non-uniqueness of the solution would imply the existence of forms of loss 
of stability of the bent rod for which the deformation is the same in all cross-sections of the beam. If this 
type of equilibrium bifurcation is possible, it would occur for extremely large values of the parameter 13. 

We will now assume that the cross-section of the beam has a single axis of symmetry, which coincides 
with the x2 axis. In this case, physical consideration suggests that the distribution of the normal stresses 
D33 over the cross-section of a beam bent in the X2X 3 plane will be symmetrical about the x2 axis, and the 
moment of these stresses about the x2 axis will be equal to zero. This assertion can be rigorously proved 
starting from the uniqueness of the solution of two-dimensional boundary-value problem (1.8), (1.9), (1.12). 

It can be shown by a direct check that in the case of a symmetrical cross-section, boundary-value 
problem (1.8), (1.9), (1.12) for an isotropic uniform material is invariant under the following replacement 
of the independent variables and unknown functions 

x ; = - x  I, x~=x 2, a ' = - a ,  P '=P  (1.13) 

Suppose oc = f(x1, x2) and p = g(xl, x2) are the solution of boundary-value problem (1.8), (1.9), (1.12). 
By virtue of (1.13) the functions a = - f ( - x l ,  x2) and p = g(-xl, x2) satisfy the same boundary-value 
problem. From the uniqueness of the solution we obtain 

f (-xl ,x2) =-f(xl ,x2),  g(-xl,x2) = g(xl, X2) (1.14) 

The following property of the solutions of boundary-value problem (1.8), (1.9), (1.12) for the region 
or, symmetrical about thex2 axis, follows from (1.2), (1.4), (1.6) and (1.14): the functions ct, D12 and D21 
are odd, while p, Du  and D33 are even with respect to the variable xl. This property, taking relation 
(1.11) into account, implies the equality M" e2 = 0. Hence, if the cross-section of the beam has an axis 
of symmetry in the bending plane, the system of forces acting in any cross-section of the deformed beam 
is statically equivalent to the bending moment acting in the bending plane. 

After solving boundary-value problem (1.8), (1.9), (1.12), the value of the moment M 1 = M • i is 
calculated from (1.11) and becomes a certain known function of the parameter 13. Inversion of the 
function M1(13 ) enables us to determine the curvature of the axis of the bent rod for a specified value 
of the bending moment. 

Thus, assumptions (1.1) on the nature of the deformation of the prismatic solid enable one, by solving 
a two-dimensional boundary-value problem, to satisfy the equilibrium equations inside the solid and 
the boundary conditiions on the side surface. The boundary conditions at the cylinder ends are satisfied 
in the Saint-Venant sense, i.e. in the integral sense of the static equivalence of the stresses to the specified 
bending moment. The initial three-dimensional boundary-value problem for a cylindrical solid is thereby 
reduced to a two-diraensional problem on the cross-section of the cylinder. 

The possibility of replacing the exact boundary conditions at the beam ends by integral relations is 
based on the Saint-Venant principle. The use of the Saint-Venant principle in non-linear problems of 
elasticity is related to the singularities [4], which appear when the principal vector of the forces acting 
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at the beam end are non-zero. In the pure bending problem considered here there are no such 
singularities, since the principal vector of the end load is equal to zero. This enables us, for this non- 
linear problem, to assume that the Saint-Venant principle hold in the sense that the stressed states of 
the beam, caused by the action of two different systems of end loads, having zero principal vector and 
the same principal moment, will be different solely in the immediate vicinity of the end. 

2. F O R M U L A T I O N  OF T H E  T W O - D I M E N S I O N A L  
P R O B L E M  IN STRESSES 

We will covert the boundary-value problem described above on a cross-section of a cylinder by eliminating 
the function ot and p and taking the unknown components of the Piola stress tensor (1.7) as fundamental. 
As is well known [5], the deformation gradient satisfies the following compatibility equations 

i~ x aC/ark = 0 (2.1) 

By (1.2) in the problem of pure bending the tensor C has the representation 

C = Ctlijit + C12ile2 + C2ti2il + C22i2e2 + C33i3e3 (2.2) 

where Csk is independent ofx  3. Substituting (2.2) into (2.1) and taking (1.3) into account we obtain a 
system of compatibility equations in the theory of pure bending 

aC21 _ OCll aC33 = 13Cj2. aC.a3. = I]C22 (2.3) 
axl ax2 ' axl Ox2 

In order to write the compatibility equations in terms of the stresses, we need to express the 
deformation gradient C in terms of the tensor D. This can be done by the method described previously 
in [6]. We will introduce the tensors U and A, which form a polar expansion of the deformation gradient 

C = U.  A (2.4) 

Here U is a positive-definite quadratic root of the measure of Cauchy deformation and A is a strictly 
orthogonal tensor, which accompanies deformation and the so-called rotation tensor. The tensor S, 
defined by the relation [6] 

S = D. A T (2.5) 

in the case of an isotropic material is symmetrical and is an isotropic function of the tensor U 

S = dW/dU = ~(U) 

Under conditions, indicated in [6], the function ,r is uniquely invertible, i.e. the following relation exists 

U = rl(S) (2.6) 

The problem of constructing the relation C(D) then reduces to representing the rotation tensor in 
terms of the Piola tensor A = A(D). In fact, from (2.4) - (2.6) we have 

C = rl[D. At(D)] • A(D) (2.7) 

It follows from relations (1.3) and (2.2) that in the bending problem considered here the rotation 
tensor can be represented as follows: 

A(xl, x2, x3) = H(xl, x2)" Q(x3) 

H ( x  t , x 2 )  = (E - i3i3)cost.o(x I, x 2) + i3i 3 - i 3 × Esinto(xl, x 2) (2.8) 

Q(x 3) = itil  + ile 2 + i3e 3 = (E - ilil)cosl]x3 + itil - il x Esinl]x.a 

Here E is the unit tensor. By relations (2.8) the rotation of material fibres when an elastic solid is bent 
consists of a sequence of two finite rotations: rotation by an angle to(xl,x2) around the x3 axis and rotation 
by an angle 13~c 3 around the xl axis. 
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The representation of the rotation tensor in terms of the Piola stress tensor is determined from the 
equation which expresses the symmetry of the tensor S 

D .  A r = A .  D r ( 2 . 9 )  

Using relations (1.7) and (2.8), Eq (2.9) can be reduced to the form 

(DI2 - D2i)costo = (D]I + Dz2)sino~ (2.10) 

It is obvious that for pure bending of a rod, rotations around the rod axes are small, so that the 
inequality J~o[ < ,n/2 is necessarily satisfied. In view of the last condition. Eq. (2.10) has the unique 
solution 

costo= p s i n e =  Pq 
A I PlA (2.11) 

p=Dll +D22, q=Di2-D21, A = ~ / p 2 + q  2 

From (2.5), (2.8) and (2.11) we obtain expressions for the tensors A and S in terms of the Piola stress 
tensor for any isotropie material 

, P I [ . .  ] (2.12) A =  A (llll + i 2 e z ) - q ( i f l l - i l e z )  +i3e3 
P 

S = i-~1A [(Dj jp + Di2q)ilil + (DliD21 + Di2D22)(ili2 + i2il ) + 

+(D22 p - D21q)i2i 2 ]+ D33i3i 3 (2.13) 

If, for a specified material, the function ~ in (2.6) is known, the representation of the deformation 
gradient in terms of the tensor D can be constructed using relations (2.7), (2.9) and (2.13). 

We will obtain the function -q for two common models of a non-linearly elastic solid: a compressible 
semi-linear materia]( and a highly plastic incompressible Bartenev-Khazanovich material. The elastic 
potentials of these materials have the following respective forms [3] 

W = ~ 9~ tr 2 (U - E)+ la tr(U - E) 2 (2.14) 

W = 2kt(trU - 3). detU = 1 (2.15) 

where h and ~ are constants. The constitutive relations, which follow from (2.14) and (2.15), can be 
written as follows: 

S = ~.Etr(U - E) + 2t.t(U - E) (2.16) 

S = 21~E - qoU -I (2.17) 

Here q0 is the pressure in the incompressible solid, which is not expressible in terms of the deformation. 
On the basis of (2.16) we obtain the representation U = "q(S) for the semi-linear material 

U = E +  I S -  v EtrS v = ~  
1 + v ' 2(~,  + ~t) 

(2.18) 

A similar representation for a Bartenev-Khazanovich material can be derived from (2.17) by 
eliminating the pressure q0 using the incompressibility condition and has the form 

U = [det(S - 21.tE)]g (S - 21.tE) -I (2.19) 

3. T H E  STRESS F U N C T I O N S  AND THE V A R I A T I O N A L  
F O R M U L A T I O N  OF THE B E N D I N G  P R O B L E M  
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The equilibrium equations (1.8) are satisfied identically by the following substitution 

OW Dn ~ = ~dp2 ' D2 I- aW Ol I = 0x2 _ - ~ - x t  ' 09. 2 = _~(i)1 ' D33 _ 3 ~  2 3 ~ ,  (3.1) 
• _ 3x I 3x2 

The functions ~(xl, X2), q~)l(Xl, X2) qb2(Xl, X2) will be called the stress functions. Introducing the vector 
qb = ~l i l  + ~2i2 and the nabla operator V = ilO/Oxl + i20/0x2 in the cross-section plane of the beam, 
we can write representation (3.1) in the following invariant (coordinate-free) form 

D = • • (Vq~il + 13~e2) + V - (e. cI))i3e 3, e = - i  3 X E (3.2) 

Using relations (3.2) it is easy to construct a representation of the Piola tensor in terms of the stress 
function in any curvilinear coordinates, introduced into the region or. According to (3.2), boundary 
conditions (1.9) on the boundary Oct of the cross-section of the rod can be written in terms of the stress 
functions as follows: 

t . ¢ b  = O ,  O q ' / O s  = 0 (3 .3 )  

where t is unit vector tangential to the curve &r and s is the actual length of the arc on 0or. Since the 
function ~ is determined by the stressed state of the solid, apart from an additive constant, in the case 
of the simply connected region cr the second equation of (3.3) is equivalent to the condition if" = 0. 

If the deformation gradient C is expressed in terms of the tensor D, as described in Section 2, and 
the tensor D is expressed in terms of the stress function using (3.1), the two-dimensional boundary- 
value problem of the bending of a beam will consist of the three compatibility equations (2.3), written 
in terms of the stress functions ~ ,  ~1, ~2, and the boundary conditions (3.3). This boundary-value 
problem allows of a variational formulation based on the principle of supplementary energy of the non- 
linear theory of elasticity [5, 7]. 

Consider the functional II, defined on the set of stress functions, doubly differentiable in the region 
tr, which on Ocr satisfy the conditions t" • = • = 0, 

rl = ~[ VID(~,W)Idcr, V(D) = tr[cr(D) - D]- W(D) (3.4) 
fT 

Here V(D) is the specific supplementary energy, which is related to the specific potential energy W(C) 
by a Legendre transformation D(@, ~ )  - representation (3.2) of the Piola tensor in terms of the stress 
functions. Since C = OV/OD it is easily verified that the condition for the functional FI to be stationary 
is equivalent to compatibility equations (2.3). 

Using relations (2.14), (2.15), (2.18) and (2.19) we obtain the specific supplementary energy functions 
for a semi-linear material and a Bartenev-Khazanovich material respectively 

V(S)=~'ff~( t rS2-  vl+vtr2S) + t rS  n V(S)=3Idet(S-2t 'tE)]g+6~t (3.5) 

The function V(D) which occurs in functional (3.4) for the materials considered is obtained by 
substituting expression (2.13) into relations (3.5). 

4. THE B E N D I N G  OF A BEAM OF R E C T A N G U L A R  C R O S S - S E C T I O N  

In this case region cr is given by the inequalities 

I.rJl ~ a, L~21 ~ i~ (4.1) 

where 2a and 2b are the width and height of the rectangle. In view of the symmetry of this region about 
the x2 axis the oddness properties of the functions oc, D12 and DZl and the evenness of the functions p, 
Bll and B33 with respect to the variable xb noted at the end of Section 1, hold. It follows from this, 
taking relations (1.2), (1.6) and (3.1) into account, that the stress functions • and ~1 are even and the 
function @z is odd with respect to the variable xv 

We will use Ritz's method to solve the variational problem of the stationarity of the functional Fl. 
We will approximate the required stress functions q~ ~1 cD2 by polynomials inxl andx2, confining ourselves 
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to terms up to the third power inclusive. Boundary conditions (1.9) on the side surface of the beam, 
taking relations (3.1) into account, can be written as follows: 

3 ~  I Ox 2 .q =+_,, = 0 2 q =+_,, = O, bud / 3x~ xz =_+b = Oi .~2 =_+h = 0 (4.2) 

By satisfying conditions (4.2) and the evenness properties, we obtain the following approximation of 
the required stress functions 

O i  = m ( x  2 - b 2 ), • 2 = Bx ,  ( x~  - a 2 ), W = K ( 4 . 3 )  

By relation (3.1) the representation of the Piola stress tensor, corresponding to approximation (4.3), 
has the form 

D = ~ B x ,  (x2t - a 2 )i,e 2 - ~3A(x 2 - b 2 ) i2e  2 + [2Ax 2 _ B ( 3 x (  - a 2 )]i3e 3 (4.4) 

After substituting expressions (4.3) into the supplementary energy function 17, the latter becomes a 
function of the two variables A and B, while the condition for it to be stationary reduces to the 
equations 

3H/OA = O, 3 H / O B  = 0 (4.5) 

The system of no:a-linear equations (4.5) in the constantsA and B were solved numerically for various 
of 13. After determining the quantitiesA and B the bending moment M 1 is calculated from (1.11) and 
(4.4), taking into account the relation p(xl, Xz) = 13-1C33(xl, Xz) , which follows from (1.2). 

The last formula also enables us to obtain the curvature of the axis of the bent beam 

lip(O, O) = [~/C33(0 , O) (4.6) 

Calculations show that the quantity C33(0,0) differs only slightly from unity both for a semi- 
linear material and for a Bartenev-Khazanovich material. Hence, by relation (4.6), the parameter 
13 can be assumed, with a high degree of accuracy, to be the curvature of the axis of the deformed 
beam. 

A graph of the bending moment against the curvature of the axis of the bent beam for a semi-linear material 
is shown in Fig. 1 (crave 1). Straight line 1 corresponds to classical linear bending theory, according to which 

Mi = It( I + v)ab3~/6  (4.7) 

I n  the calculations we assumed is  = 1, v = 0 . 3 ,  a = 0.5 and b = 1 .5 .  

The deformation di~agram of a beam of Bartenov-Khazanovich material represented by curve 2 for ~ = 1, a = 
0.5 and b = 1.5. Note that, in the range of small deformations, the Bartenev-Khazanovich material obeys Hooke's 
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law with a shear modulus I~ and Poisson's ratio v = 1/2. Hence, straight line 2 in the figure is described by formula 
(4.7) with v = 1/2. 

Th i s  r e sea rch  was s u p p o r t e d  by the  R u s s i a n  F o u n d a t i o n  for  Basic  R e s e a r c h  (99-01-01017).  
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